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Padé Approximants Applied to the Equation of
State and Heat Capacity of Quantum Ideal Gases

J. Amorés'
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Padé approximants have been applied to the equation of state and heat capacity
of the guantum ideal gascs. For the Bose gas the agrcement is almost perfect.
For the Fermi gas, the maximum relative error is 0.03% for the former and
0.4 % for the latter.

KEY WORDS: Bose and Fermi quantum ideal gases; equation of state; heat
capacity: Padé approximants.

1. INTRODUCTION

The treatment of quantum ideal systems by using equilibrium statistical
mechanics presents well-known difficulties: approximate simple expressions
exist for the extreme cases but not for the intermediate range. This holds
true for the quantum ideal gases of Bose and Fermi as well as for solids at
low temperatures (Debye model). Rational expressions for the whole
possible range would be very useful for everyone interested in such systems
from all branches of physics.

In most cases, the problem can be approached by using integer poten-
tial series. In the low-density range, these series are very similar to the virial
expansions of classical statistical mechanics. However, in this case the virial
coefficients are due to the quantum behavior, whereas in the classical
fomulation they originate from molecular interactions.

One way of improving the results would be to increase the number of
terms of the series. However, this would involve obvious difficulties.
Another way would be to substitute Padé approximants [ 1] for the integer
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potential series. The Padé approximant [L/M ] (x). in terms of the variable
X, is a quotient of polynomials of the form

L+pyx+pax+ - +p -

L/M](x)= 3
[L/M](x) L4 g X+ ¢x"4 - gy

(1)

with the condition that L + M <k — 1. where & is the number of cocfficients
of the expansion that are known. The unknown coefficients p; and ¢, are
obtained from the condition that the expansion of Eq. (1) in power series
of the variable v must reproduce the first L+ M + | coeflicients of the
development. Here we develop the treatment for Bose and Fermi ideal
gases.

2. BOSE IDEAL GAS

The equation of state (EOS) for a Bose ideal gas given by a standard
textbook on equilibrium statistical mechanics [2] is

P 1
ﬁ=?.&’52(:) (2)

where 2= (/°/2amkT)' * is the thermal wavelength.,
/ 4
)

/52

||[\/]\

gs.(2)=

=1

and = is the fugacity. This quantity varies between 0 and 1. If =1 (region
of Bose-Einstein condensation). this function coincides with the Riemann
zeta function of the same argument: g¢.(1)=_(5/2)=1.341.... In this case,
the problem is completely solved. Outside of this region, the fugacity is
implicity determined by the relation

%=1=L23:(:) (3)

K
2

where

32

)
ta
[N
Il
n [\/]\‘
-
t

Thus, = must be obtained by numerical methods.
The same question arises for the reduced specific heat capacity (Cy, in
units of Nk), which is determined by the relation

- o (4)
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where

giz)= Z ~_
/=|/

Obviously g, .(z) diverges for -=1. The difficulty is the same as for the
EOS. To our knowledge, data for the three g functions are very scarce.
Robinson [3] furnished polynomial exprcssnons for these functions corre-
sponding to values of « (x= —In z) between 0 and 1. Later, London [4]
calculated their values for x = 2. Finally, tables for g, ». g5.. and g5 1, for
0 <2< 5 are given by Kincaid and Cohen [5].

Although these functions converge very slowly, when they do so, we
have calculated their values to five exact digits by means of a computer
program. In this way we have tabulated the values of Z= PV/NkT and
Cy/Nk.

Moreover, the earlier relations can be expressed in the form of a virial
expansion, namely,

¥ FENAR

Z= Z a, <—> (5)
s, 5_3[ ‘_3 [

Z 5 a,<4—> (6)

The first four coefficients of this virial expansion were found by Pathria
[6]. To improve the approximation, we have calculated the fifth coef-
ficient:

4 1

7
——s———=—3.5405x10 ° (7)

2
a=gitytyTen

(%)

Ziff and Kincaid [7] calculated the virial coefficients for the ¢-dimensional

ideal Bose gas (d=1,2...6). For d=3 the virial coefficients are given

through the tenth order. Our numerical value for «4 coincides exactly.
Alternatively making x = /*/v we can write

Z=1+7Y ay '_1+a,\<1+ y Ly ) (8)

N

- !
3 1 " a,
==<l—zuyx y (5-30)—x" !
2{1 2(1_\[ 2 { 3/)02 ]} (9)
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Table III.  p, and ¢, Coeflicient for the Approximants Deduced from the
EOS of the Bose Ideal Gas

[4.0] (3.1] [2.2] [1.3] [0.4]
Py %10 —1.7678 —2.0859 —2.0622 —1.9695
pax 107 —3.3001 23237 1.8250
pax 10° ~111.29 ~6.3058
pax 10° —3.5404
¢, x 107 —3.1813 —2.9444 —20174 17.678
{ -
s % 10° ~7.9893 26,627 34550
gax 10° ~23570 68023
gy x 10° 1.3397

The Padé approximants can now be generated from these expressions. All
the approximants. except the [0. 4] for Z. agree perfectly with the reference
values for both Z and Cy/Nk. Consequently. the results are presented as
tables. Tables I and Il show the results. while the coefficients are given in
Tables 111 and 1V.

[3.1].[2.2]. and [1. 3] approximants for Z show a pole on the real
axis with a value between 31 and 32. The corresponding radius of con-
vergence py of the series exceeds to those obtained by other authors [7, 8].
This value is also somewhat greater than the Fuchs limit [9]. Unfor-
tunately the [0, 4] approximant gives a worse agreement which is reflected
with pg = 5, corresponding to a pole: —4.2405 4+ 3.1492;.

In relation to the approximants for Cy/Nk, the radius of convergence
pr has the value 15.31.

Table IV. p, and ¢, Cocflicient for the Approximants Deduced from the
Reduced Heat Capacity of the Bose Idcal Gas

[4.0] [3.1] [2.2] [1.3] [0.4]
pyox 107 8.8388 4.2941 —21778 —1.2239
pax 107 66.001 25.831 6.8219
pax 107 38.951 8.9558
pax 10° 1.7702
¢, % 10° —4.5447 —11.017 —10.063 —8.8388
¢.x 10 38195 22941 1.2124
¢y % 10° 7.1863 8.6701

¢y x 10° 1.0611
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3. FERMI IDEAL GAS
The relation which serves as a starting point for the EOS is now [6]

s -1

P g g o
=5 ;=7Z _Wlﬁf (10)

where = is determined again by means of

N 1 -
AT AT >—iz )= (11)

Here g is a weight factor that arises from the “internal structure™ of the
particles (such as spin). In the ordinary case (s=1/2) g=2. However,
we present our results without a previous assignment for the value of g.
Furthermore. - can be any positive real number, in contrast to the case of
free bosons.

Combining Egs. (10) and (11), we easily find

_ PV fisl2)
CONKT ™ f3a(2)

(12)

From simple thermodynamic relations, the reduced heat capacity is
expressed as

C_\_ E/“’(_)_gj_“(:) (13)

where

Sialo)= Z (_”I :

=1

In the “semiclassical™ region, i.e., at a low density and/or high temperature,
a virial expansion is applicable. This takes the form

PV s /\ [
= = -1y ! — 14
Z=0T ;]( ) a,(gp) (14)
c., 32 5—13/ EA
—~ == (-n ! u <—> (15)
k 2,; 2 \gr

where the coefficients «, are the same as in the case of bosons. The func-
tions f,(z) have been studied in depth because of their contribution to
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many fields of physics. Cloutman [10] has tabulated very extensively
values of the functions F,(In =), closely connected with f,(-) by means of

r(”)_/;:(:)=Fn~l(1n:) (16)

where ['(n) is the Eulerian gamma function. Substituting into Eqs. (12) and
(13), we obtain practically exact values for Z and C, /Nk.

From Eqgs. (14) and (15) we can generate the corresponding Padé
approximants. It is clear that the starting expressions become progressively
more incorrect as 4%/gv increases. However, an analytical treatment intro-
duced by Sommerfeld [11] is available for the opposite case with high
density and/or low temperature, i.e., for the highly degenerated system.
Obviously, we cannot expand around 4*/gv now because this quantity
takes on excessive magnitudes. Instead, we introduce the Fermi energy as

(g=2)

£:= (h?2m)(3n’n)*?

where n= N/V. After brief manipulations, it is found that

er (O a4
ﬁ—<16> [f32(2)] (17)

If we expand around the parameter

k 2 16 2\ 23 s
.\-=(” 7) =<—"> L3207 (18)
& 9

the Sommerfeld expansion contains only even powers in x. This quantity
decreases progressively as the system becomes more degenerate, favoring its
convergence. The expressions for the chemical potential (Fermi level) 1 and
the energy E appear in most textbooks on statistical mechanics and solid
state physics. Recently Kiess [12] has proposed a straightforward, though
tedious, method for obtaining the terms of the expansion. In spite of some
shortcomings [13], the expansion is valid and allows more terms to be
evaluated.

In this way, the expressions for y and E were evaluated until the term
in x*. Later, Aguilera et al. [14, 15] found an additional term. From these
expressions, we obtain the relations for the compressibility factor Z and the
reduced heat capacity Cy/Nk, which we can write as
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I+ Y16 "36288° 15550
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5
26,7 S/, 3 247 , 10367
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5 [“L <' 20" 3024 64800 ﬂ (19)

g( 5 1, 1235 , 10,367 )

c, 1( 3247, 10367 _> (20)

T10" T7008Y 162007

The corresponding Padé approximants have also been obtained. Figures 1
and 2 compare the more significant approximants with the exact values for
Z and Cy/Nk corresponding to nondegenerate fermions, and Figs. 3 and
4 do the same for highly degenerate fermions.

We conclude that for the EOS, the [0.3] approximant of the first
sequence (nondegenerate fermions) is the best for i3/gv < 10.114, while also
the [0, 3] approximant of the second sequence (highly degenerate fermions)
is the best for 2*/gv > 10.114. The maximum relative error is 0.0278 %. The
coeflicients are a, = 1.7678 x 10 ', ¢, = 1.8668 x 10 7, ¢, = —2.8103 x 10 %,
and ¢,=3.0257x 10 ® for the first case and a,=4.1667 x 10 ',
¢, =15000x10""', ¢,=10418x10"", and ¢,=1.8786x10""' for the
second case.
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Fig. 1. Pcreentage deviation: d = [{Z . — Z )/ Z ] x 100 for the com-
pressibility factor as a function of /.*/gr for nondegenerate fermions. Open
triangles, global approximant (comprises all approximants not repre-
sented explicitly because they are indistinguishable at the scale of the
figurc); filled triangles, [0, 3] approximant: open squares, [ 1, 3] approxi-
mant; filled squares, [2, 2] approximant: open circles, [ 2, 1] approximant;
filled circles, [0.3] and (1, 3] approximans.
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Fig. 2. Percentage deviation: o = {[(Cy/NKk) e — (Cy/NK) )/

{Cy/Nk) ) % 100 for the reduced heat capacity Cy Nk as a function
of 2%gr for nondegenerate fermions. Open triangles, [1. 2] approxi-
mant: filled triangles, [0.4] approximant. open squares, [1.3]
approximant: filled squares. [0. 3] approximant: open circles, [3. 1]
approximant; filled circles. [4. 0] approximant.
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Fig. 3. As in Fig. 1 but as a function of A%/gr for highly degencrate fer-

mions. Open triangles. global approximant (as in Fig. 1); filled triangles,
[0. 3] approximant; open squares, [1,3] approximant: filled squares,
[0. 4] approximant; open circles. [3. 0] approximant: filled circles. (1. 2]
approximant; plus (cross), {2. 1] approximant.
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Fig. 4. As in Fig.2 but as a function of 2%/gr for highly
degenerate fermions. Open triangles, global approximant (as in
Fig. 1); filled triangles. [0, 3] approximant; open squares. [3,0]
approximant; filled squares, [1,2] approximant. open circles,
[2. 1] approximant: filled circles, [ 1, 2] and [2, 1] approximants.

With respect to Cy/Nk, the division is established for 4*/gv = 12. For
lower values of A*/gv the [1,2] approximant of the first sequence is the
best choice, while for higher values of A*/gv, the [0, 3] approximant of the
second sequence is the most adequate. The maximum relative error is now
0410%. The respective coefficients are a,= —8.8390x 1072 p, =
3.5504 x 1072, ¢, =1.1018 x 107!, and ¢, = 3.8201 x 10 ~* for the first case
and, for the second case [coefficients derived from the terms inside
parentheses in Eq. (20)]: ¢, =3.0000x 10 "', ¢, =3.3504x 10", and ¢, =
8.1396 x 10~ ',

In summary, the agreement is completely satisfactory. Therefore, the
introduction of more complicated approximants makes no sense.
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