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Pad6 Approximants Applied to the Equation of 
State and Heat Capacity of Quantum Ideal Gases 
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Pad6 approximants  have been applied to the equation of state and heat capacity 
of the quan tum ideal gascs. For the Bose gas the agreement is almost perfect. 
For the Fermi gas, the maximum relative error is 0.03% for the former and 
0.4"/0 for the latter. 

KEY WORDS:  Bose and Fermi quan tum ideal gases; equation of state; heat 
capacity: Pad6 approximants.  

I. I N T R O D U C T I O N  

The treatment of quantum ideal systems by using equilibrium statistical 
mechanics presents well-known difficulties: approximate simple expressions 
exist for the extreme cases but not for the intermediate range. This holds 
true for the quantum ideal gases of Bose and Fermi as well as for solids at 
low temperatures (Debye model). Rational expressions for the whole 
possible range would be very useful for everyone interested in such systems 
from all branches of physics. 

In most cases, the problem can be approached by using integer poten- 
tial series. In the low-density range, these series are very similar to the virial 
expansions of classical statistical mechanics. However, in this case the virial 
coefficients are due to the quantum behavior, whereas in the classical 
fomulation they originate from molecular interactions. 

One way of improving the results would be to increase the number of 
terms of the series. However, this would involve obvious difficulties. 
Another way would be to substitute Pad6 approximants [1]  for the integer 
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potential  series. The Pad6 approx iman t  [ L / M ]  (.v), in terms of the variable 
x, is a quotient  of polynomials  of the form 

I + p l . v + p , _ . v  2 + . . .  + p L . \  L 

[ L / M ] ( x )  = I + ql .v + q,.v'- + . . .  + qM.v ~w (1) 

with tile condit ion that L + M ~< k - I, where k is the number  of coefficients 
of the expansion that are known. The unknown coefficients Pi and q~ are 
obtained from the condit ion that the expansion of Eq. ( 1 ) in power  series 
of tile variable .v must reproduce tile first L + M +  1 coefficients of the 
development.  Here we develop the t reatment  for Bose and Fermi ideal 
gases. 

2. BOSE IDEAL GAS 

Tile equat ion of state (EOS)  for a Bose ideal gas given by a s tandard  
textbook on equilibrium statistical mechanics [2 ]  is 

P 1 
k ~  = ,;.C; <~.~ - '{:) (2) 

where 2 = (h "-/2nmk T )  z'- is tile thermal  wavelength, 

• ZI  

g5 ,_(z)= y. /5 ,  
/=1  

and z is the fugacity. This quant i ty  varies between 0 and I. If z =  I {region 
of Bose-Einstein condensat ion) ,  this function coincides with tile Riemann 
zeta function of the same argument :  gs_,(l ) =  ~ (5 /2 )=  1.341 .. . .  In this case, 
tile problem is completely solved. Outside of this region, tile fugacity is 
implicity determined by the relation 

N 1 1 
I'" r 2~g3_,(z) 

where 

• Z!  

g.~ 2(:)  = i ~',T 13 2 

{3) 

Thus, - must be obtained by numerical  methods.  
Tile same question arises for tile reduced specific heal capaci ty (Cv,  in 

units of N k  }, which is deterrnined by tile relation 

C, 15 gs~{zl 9 g~ _,(z) 
(4) 

N k  4 g32(-)  4 g l 2 ( - 1  
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whcre 
J.  _ /  

g, _,t--)= 

Obviously g. 2(z) diverges for z = 1. The difficulty is the same as for the 
EOS. To our knowledge, data for the three g functions are very scarce. 
Robinson [3]  furnished polynomial expressions for these functions corre- 
sponding to values of ~ (-_z= - I n  z) between 0 and 1. Later, London [4]  
calculated their values for ~ =  2. Finally, tables for g~ 2, g3 2, and g5 2, for 
0 ~ 2 ~< 5 are given by Kincaid and Cohen E5]. 

Although these functions converge very slowly, when they do so, we 
have calculated their values to five exact digits by means of a computer 
program. In this way we have tabulated the values of Z =  P V / N k T  and 
Cv/Nk .  

Moreover, the earlier relations can be expressed in the form of a virial 
expansion, namely, 

Z =  y' a, (5) 
/ = l  

Nk ) ~ al (6) 
- -  I = 1  

The first four coefficients of this virial expansion were found by Pathria 
[6]. To improve the approximation, we have calculated the fifth coef- 
ficient: 

I 7 2 4 1 
3.5405 x 10 ~' (7) a 5 = ~ + ' ~ + 3 3  552 1212 - 

Ziff and Kincaid [7]  calculated the virial coefficients for the d-dimensional 
ideal Bose gas {d= 1,2...6). For d = 3  the virial coefficients are given 
through the tenth order. Our numerical value for a~ coincides exactly. 

Alternatively making x = ).3/t, we can write 

Z =  1 + ~ at.v t i = 1  +a- ,x  1 + Z --a'xt 2 (8) 
I = .  - / = 2  .~ a - ,  

C,. 3 1 + at.x t J 
Nk  "~ 

- / = 2  - -  

3 { ,  E ' ]} ='~ l--~a_~x I - ~  ( 5 - 3 / ) a / . x  "/ I (9~ 
- -  - -  / = 3  ~ l - t  



924 Amor6s 

b .  

o 

N 

G u 

r i  

J 

c 

e,--, 

c 

N N N N  

o 

r~ 
O 

N 

N 

,J 

O 

= ~  



Quantum Ideal Gases 925 

¢ -  

> 

.-e 

_ z .  

~2 

-e. 

e~--, 

e..-, 
e..-, 

~2 

~2 

t ~  

P", 
r- I  

o", 

- - ;  I v-,. 

C i  i"-i f ' l  

d d d  

G 
r ~  

_i  

$ 4 0 1 5 5 - 1 1  



926 Amor6s 

Table I I I .  p,  a n d  q, Coefficient for the Approximants Deduced from the 
E O S  o f  the Bose  Idea l  G a s  

[ 4 , 0 3  [3 ,  l ]  [ 2 , 2 ]  [ 1 , 3 ]  [ 0 , 4 ]  

- 1.7678 - 2.0859 - 2.0622 - 1.9695 

- 3.3001 2.3237 1.8250 

- 111.29 - 6 . 3 0 5 8  

- 3.5404 

/h x 10 

Pz x 103 

p~ x 10 ¢' 

/ h  x I0"  

ql x 10z 

q2 x l0  t 

q3 x 10" 

q~ x I0 ~ 

- 3.1813 - 2 .9444 - 2.0174 17.678 

- 7 . 9 8 9 3  - 26.627 3455.0 

- 2 .3570 6802.3 

1.3397 

The Pad6 approximants can now be generated from these expressions. All 
the approximants, except the [0, 4]  for Z. agree perfectly with the reference 
values for both Z and Cv/Nk. Consequently, the results are presented as 
tables. Tables 1 and II show the results, while the coefficients are given in 
Tables III and IV. 

[3, 1], [2, 2],  and El, 3] approximants for Z show a pole on the real 
axis with a value between 31 and 32. The corresponding radius of con- 
vergence PR of the series exceeds to those obtained by other authors [7, 8]. 
This value is also somewhat greater than the Fuchs limit [9] .  Unfor- 
tunately the [0, 4]  approximant gives a worse agreement which is reflected 
with PR ~-5, corresponding to a pole: -4 .2405  ___ 3.1492i. 

In relation to the approximants for Cv/Nk, the radius of convergence 
PR has the value 15.31. 

Table IV.  p, a n d  q, Coefficient for the Approximants Deduced from the 
Reduced Heal Capacity of the Bose Idea l  G a s  

[ 4 . 0 ]  [ 3 . 1 ]  { 2 . 2 ]  [ 1 . 3 ]  [ 0 . 4 ]  

8.8388 4.2941 - 2 . 1 7 7 8  - 1 . 2 2 3 9  

66.0(11 25.831 6.8219 

38.951 8.9558 

1.7702 

/h  × 102 

p: x I0  a 

/ b  x I0  ~ 

P4 x I0  ~ 
ql × 102 

q :  × 103 

q 3 ×  10 ~ 

q4 x 10 ~' 

- - 4 . 5 4 4 7  - 11.017 - - 1 0 . 0 6 3  - 8 .8388 

3.8195 2.2941 1.2124 

7.1863 8.6701 

1.0611 
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3. FERMI IDEAL GAS 

The relation which serves as a start ing point for the EOS is now [6]  

P g g ~-" ); i - 
x-7~ = ~.Ii~ , ( : )  / ? ,  , ( - 1  ( lo )  

where - is determined again by means of 

N 1 g g ); i 
v V-.,=, (11) 

Here g is a weight factor that arises from the "internal  s t ructure" of the 
particles (such as spin). In the ordinary case ( s =  I/2) g = 2 .  However ,  
we present our  results without  a previous assignment  for the value of g. 
Fur thermore ,  z can be any positive real number ,  in contrast  to the case of 
free bosons. 

Combin ing  Eqs. (10) and (11), we easily find 

PV ./52(:) 
Z (12) 

Nk T .132(z) 

From simple the rmodynamic  relations, the reduced heat capaci ty  is 
expressed as 

C, 15./~2(z) 9.132(z) 
Nk 4 ./32(z) 4./'j _,(z) 

(13) 

where 

./'12(z)= ( - I )  / ~/~: 
/=1 

In the "semiclassical'" region, i.e., at a low density and /or  high temperature ,  
a virial expansion is applicable. This takes the form 

PV • ( ) 3 - y  
Z = N k T  = ~ ( - 1 )  / l a  / (14) 

; =  i \gv l 

C, 3 " ); ~ 5 - 3 /  /23"~; j 
N-~=~- ~ ( - I  - - a ; ,  , (15) 

- ; =  ~ 2 \ g v /  

where the coefficients a; are the same as in the case of bosons. The func- 
tions ./i,(z) have been studied in depth because of their contr ibut ion to 
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many fields of physics. Cloutman [-10] has tabulated very extensively 
values of the functions F,,(ln z), closely connected with J;,(z) by means of 

F(n). / i , (z)  = F,,_ t0n :)  (16) 

where F(n) is the Eulerian gamma function. Substituting into Eqs. (12) and 
(13), we obtain practically exact values for Z and C v / N k .  

From Eqs. (14) and (15) we can generate the corresponding Pad6 
approximants. It is clear that the starting expressions become progressively 
more incorrect as ),~/gv increases. However, an analytical treatment intro- 
duced by Sommerfeid FI1] is available for the opposite case with high 
density and/or low temperature, i.e., for the highly degenerated system. 
Obviously, we cannot expand around 23/g~, now because this quantity 
takes on excessive magnitudes. Instead, we introduce the Fermi energy as 
( g = 2 )  

et..= (h2/2m)(3rtzn) 2'3 

where n = N/V.  After brief manipulations, it is found that 

e,,/. / '9rt'] ','-~ 
~7-~ = \-i-~j [J~,,2(--)-] 2'~ (17) 

If we expand around the parameter 

x =  = F'.I~,2(:)] 23 (18) 
\%-/ 

the Sommerfeld expansion contains only even powers in x. This quantity 
decreases progressively as the system becomes more degenerate, favoring its 
convergence. The expressions for the chemical potential (Fermi level) It and 
the energy E appear in most textbooks on statistical mechanics and solid 
state physics. Recently Kiess 1-12] has proposed a straightforward, though 
tedious, method for obtaining the terms of the expansion. In spite of some 
shortcomings [-13], the expansion is valid and allows more terms to be 
evaluated. 

In this way, the expressions for It and E were evaluated until the term 
in x 3. Later, Aguilera et al. 1-14, 15] found an additional term. From these 
expressions, we obtain the relations for the compressibility factor Z and the 
reduced heat capacity C v / N k ,  which we can write as 
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Z = 2 ~ r (  5 I 1235 x3 10,367 x4_... ) 
5 k T \  1 + f2 x-i-6 x2- 36,28----~ 155,52--~ 

5 x (  3 247 10367 x3 ) ]  - 2 t : " F l + ~  1 -  " - - -  - . . .  (19) 
5 kTL ~x-3-o-~X- 64800 

N k  2LT-T x 1 - ] - ~ x -  x - ' - - - x 3 - ' " 1 6 2 0 0  (20) 

The corresponding Pad6 approximants  have also been obtained. Figures I 
and 2 compare  the more significant approximants  with the exact values for 
Z and C v / N k  corresponding to nondegenerate  fermions, and Figs. 3 and 
4 do the same for highly degenerate fermions. 

We conclude that for the EOS, the [0. 3]  approximant  of the first 
sequence (nondegenerate fermions) is the best for 23/gt, < 10.114, while also 
the [0, 3 ] approximant  of the second sequence (highly degenerate fermions) 
is the best for 2~/gv > 10.114. The maximum relative error  is 0.0278%. The 
coefficients are a 2 = 1.7678 x 10 i, q~ = 1.8668 x 10 2, q2 = -2 .8103  x 10 -4, 
and q3 = 3.0257 × I0 6 for the first case and a,  = 4.1667 × 10 ~,  
q l = l . 5 0 0 0 × 1 0  1 q _ , = l . 0 4 1 8 × 1 0 - t  and q .~=1 .8786×10  - l  for the 
second case. 
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Fig. I. Percentage deviation: d= [(Z¢,,~ - Z,,,b)/Z,,,b ] X 100 for the com- 
pressibility factor as a function of ;.3/gr for nondegenerate fermions. Open 
triangles, global approximant {comprises all approximants not repre- 
sented explicitly because they are indistinguishable at the scale of the 
figure}: filled triangles, [0, 3] approximant: open squares, [ 1.3] approxi- 
mant; filled squares, [2. 2] approximant: open circles. [.2. 1 ] approximant; 
filled circles. [0.3] and [1, 3] approximans. 
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Fig. 2. Percentage deviation: d =  't[(CvW/,'J,:,,t,- (Cv/Nk),,,h]/ 
tCv/'Nkl,,,bl x I00 for the reduced heat capacity Cv/Nk as a function 
of ,;.~.'gr for nondegencrate fermions. Open triangles. [ 1.2] approxi- 
mant: filled triangles, [0.4] approximant" open squares, [ I .3 ]  
approximant: filled squares. [0. 3] approximant: open circles. [3. 1] 
approximanl; filled circles. [4. O] approximant. 

-0.020 

-0.060 

-0.I00 

..4- 

el- 

& A "~- 

+ 
-0.140 

9 29 49  

~.3 /gv 

Fig. 3. As in Fig. I but as a function of ),3/gr for highly degenerate fer- 
talons. Open triangles, global approximant [as in Fig. l ): filled triangles, 
[0, 3] approximant; open squares, [I, 3] approximant; filled squares, 
[0. 4] approximant; open circles. [3.0] approximant: filled circles. [1, 2] 
approximant; plus (crossh [2. I] approximant. 
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Fig. 4. As in Fig. 2 but as a function of ).3/'gv for highly 
degenerate fermions. Open triangles, global approximant (as in 
Fig. I ); filled triangles, [0. 3] approximant;  open squares, [3, O] 
approximant; filled squares, [ I , 2 ]  approximant:  open circles, 
[2, I ]  approximant:  filled circles, [ I, 2] and [2, I ]  approximants. 

With respect to Cv/Nk, the division is established for 23/gv = 12. For 
lower values of 23/gv the El, 2] approximant of the first sequence is the 
best choice, while for higher values of 23/gv, the [0, 3] approximant of the 
second sequence is the most adequate. The maximum relative error is now 
0.410% . The respective coefficients are a2=-8.8390xlO -2, p~=  
3.5504 x 10-'-, q~ = 1.1018 x 10 -~, and q_,= 3.8201 x 10 -3  for the first case 
and, for the second case [coefficients derived from the terms inside 
parentheses in Eq. (20)]: q, = 3.0000x 10 - i  qz=3 .3504x  10 - ' ,  and q3 = 
8.1396 x 10- i 

In summary, the agreement is completely satisfactory. Therefore, the 
introduction of more complicated approximants makes no sense. 
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